In mathematics, given a vector space X with an associated quadratic form q, written (X, q), a null vector or isotropic vector is a non-zero element x of X for which q(x) = 0.
In the theory of real bilinear forms, definite quadratic forms and isotropic quadratic forms are distinct. They are distinguished in that only for the latter does there exist a nonzero null vector.
A quadratic space (X, q) which has a null vector is called a pseudo-Euclidean space. The term isotropic vector v when q(v) = 0 has been used in quadratic spaces,[1] and anisotropic space for a quadratic space without null vectors.
A pseudo-Euclidean vector space may be decomposed (non-uniquely) into orthogonal subspaces A and B, X = A + B, where q is positive-definite on A and negative-definite on B. The null cone, or isotropic cone, of X consists of the union of balanced spheres: The null cone is also the union of the isotropic lines through the origin.