Numerical methods for partial differential equations

Numerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs).[1][2]

In principle, specialized methods for hyperbolic,[3] parabolic[4] or elliptic partial differential equations[5] exist.[6][7]

  1. ^ Pinder, George F. (2018). Numerical methods for solving partial differential equations : a comprehensive introduction for scientists and engineers. Hoboken, NJ. ISBN 978-1-119-31636-7. OCLC 1015215158.{{cite book}}: CS1 maint: location missing publisher (link)
  2. ^ Rubinstein, Jacob; Pinchover, Yehuda, eds. (2005), "Numerical methods", An Introduction to Partial Differential Equations, Cambridge: Cambridge University Press, pp. 309–336, doi:10.1017/cbo9780511801228.012, ISBN 978-0-511-80122-8, retrieved 2021-11-15
  3. ^ "Hyperbolic partial differential equation, numerical methods - Encyclopedia of Mathematics". encyclopediaofmath.org. Retrieved 2021-11-15.
  4. ^ "Parabolic partial differential equation, numerical methods - Encyclopedia of Mathematics". encyclopediaofmath.org. Retrieved 2021-11-15.
  5. ^ "Elliptic partial differential equation, numerical methods - Encyclopedia of Mathematics". encyclopediaofmath.org. Retrieved 2021-11-15.
  6. ^ Evans, Gwynne (2000). Numerical methods for partial differential equations. J. M. Blackledge, P. Yardley. London: Springer. ISBN 3-540-76125-X. OCLC 41572731.
  7. ^ Grossmann, Christian (2007). Numerical treatment of partial differential equations. Hans-Görg Roos, M. Stynes. Berlin: Springer. ISBN 978-3-540-71584-9. OCLC 191468303.