Due to the dynamic nature of O-GlcNAc and its presence on serine and threonine residues, O-GlcNAcylation is similar to protein phosphorylation in some respects. While there are roughly 500 kinases and 150 phosphatases that regulate protein phosphorylation in humans, there are only 2 enzymes that regulate the cycling of O-GlcNAc: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) catalyze the addition and removal of O-GlcNAc, respectively.[2] OGT utilizes UDP-GlcNAc as the donor sugar for sugar transfer.[3]
First reported in 1984, this post-translational modification has since been identified on over 5,000 proteins.[4][5] Numerous functional roles for O-GlcNAcylation have been reported including crosstalking with serine/threonine phosphorylation, regulating protein-protein interactions, altering protein structure or enzyme activity, changing protein subcellular localization, and modulating protein stability and degradation.[1][6] Numerous components of the cell's transcription machinery have been identified as being modified by O-GlcNAc, and many studies have reported links between O-GlcNAc, transcription, and epigenetics.[7][8] Many other cellular processes are influenced by O-GlcNAc such as apoptosis, the cell cycle, and stress responses.[9] As UDP-GlcNAc is the final product of the hexosamine biosynthetic pathway, which integrates amino acid, carbohydrate, fatty acid, and nucleotide metabolism, it has been suggested that O-GlcNAc acts as a "nutrient sensor" and responds to the cell's metabolic status.[10] Dysregulation of O-GlcNAc has been implicated in many pathologies including Alzheimer's disease, cancer, diabetes, and neurodegenerative disorders.[11]