Octahedral pyramid

Octahedral pyramid
TypePolyhedral pyramid
Schläfli symbol( ) ∨ {3,4}
( ) ∨ r{3,3}
( ) ∨ s{2,6}
( ) ∨ [{4} + { }]
( ) ∨ [{ } + { } + { }]
Cells1 {3,4}
8 ( ) ∨ {3}
Faces20 {3}
Edges18
Vertices7
Symmetry groupB3, [4,3,1], order 48
[3,3,1], order 24
[2+,6,1], order 12
[4,2,1], order 16
[2,2,1], order 8
DualCubic pyramid
Propertiesconvex, regular-cells, Blind polytope

In 4-dimensional geometry, the octahedral pyramid is bounded by one octahedron on the base and 8 triangular pyramid cells which meet at the apex. Since an octahedron has a circumradius divided by edge length less than one,[1] the triangular pyramids can be made with regular faces (as regular tetrahedrons) by computing the appropriate height.

Having all regular cells, it is a Blind polytope. Two copies can be augmented to make an octahedral bipyramid which is also a Blind polytope.

  1. ^ Klitzing, Richard. "3D convex uniform polyhedra x3o4o - oct". 1/sqrt(2) = 0.707107