In algebra, an Okubo algebra or pseudo-octonion algebra is an 8-dimensional non-associative algebra similar to the one studied by Susumu Okubo.[1] Okubo algebras are composition algebras, flexible algebras (A(BA) = (AB)A), Lie admissible algebras, and power associative, but are not associative, not alternative algebras, and do not have an identity element.
Okubo's example was the algebra of 3-by-3 trace-zero complex matrices, with the product of X and Y given by aXY + bYX – Tr(XY)I/3 where I is the identity matrix and a and b satisfy a + b = 3ab = 1. The Hermitian elements form an 8-dimensional real non-associative division algebra. A similar construction works for any cubic alternative separable algebra over a field containing a primitive cube root of unity. An Okubo algebra is an algebra constructed in this way from the trace-zero elements of a degree-3 central simple algebra over a field.[2]