Open ocean convection is a process in which the mesoscale ocean circulation and large, strong winds mix layers of water at different depths. Fresher water lying over the saltier or warmer over the colder leads to the stratification of water, or its separation into layers. Strong winds cause evaporation, so the ocean surface cools, weakening the stratification. As a result, the surface waters are overturned and sink while the "warmer" waters rise to the surface, starting the process of convection. This process has a crucial role in the formation of both bottom and intermediate water and in the large-scale thermohaline circulation, which largely determines global climate.[1] It is also an important phenomena that controls the intensity of the Atlantic Meridional Overturning Circulation (AMOC).[2]
Convection exists under certain conditions which are promoted by strong atmospheric forcing due to thermal or haline surface fluxes. This may be observed in oceans adjacent to boundaries with either dry and cold winds above or ice, inducing large latent heat and moisture fluxes. Ocean convection depends on the weakness of stratification under the surface mixed layer. These stratified water layers must rise, near to the surface resulting in their direct exposition to intense surface forcing.[1][3]
{{cite journal}}
: |first=
has generic name (help)