Optic equation

Integer solutions to the optic equation 1/a + 1/b = 1/c for 1 ≤ a,b ≤ 99. The number in the circle is c. In the SVG file, hover over a circle to see its solution.

In number theory, the optic equation is an equation that requires the sum of the reciprocals of two positive integers a and b to equal the reciprocal of a third positive integer c:[1]

Multiplying both sides by abc shows that the optic equation is equivalent to a Diophantine equation (a polynomial equation in multiple integer variables).

  1. ^ Dickson, L. E., History of the Theory of Numbers, Volume II: Diophantine Analysis, Chelsea Publ. Co., 1952, pp. 688–691.