Imaging technique to visualise vascular networks in the retina
Optical coherence tomography angiography (OCTA) [ 1] [ 2] [ 3] [ 4] is a non-invasive imaging technique based on optical coherence tomography (OCT) developed to visualize vascular networks in the human retina ,[ 4] [ 5] [ 6] [ 7] [ 8] [ 9] choroid ,[ 10] [ 11] [ 12] [ 13] skin [ 14] and various animal models.[ 15] [ 16] [ 17] OCTA may make use of speckle variance optical coherence tomography .
OCTA uses motion contrast between cross-sectional OCT scans (B-frames) to differentiate blood flow from static tissue, enabling imaging of vascular anatomy.[ 4] [ 18] To correct for patient movement during scanning, bulk tissue changes in the axial direction are eliminated, ensuring that all detected changes are due to red blood cell movement .[ 18] This form of OCT requires a very high sampling density in order to achieve the resolution needed to detect the tiny capillaries found in the retina.[ 18] [ 19] This has allowed OCTA to obtain detailed images of retinal vasculature in the human retina[ 20] and become widely used clinically to diagnose a variety of eye diseases, such as age related macular degeneration (AMD),[ 21] diabetic retinopathy (DR),[ 22] [ 23] artery and vein occlusions, and glaucoma .[ 24] [ 18]
^ Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ, et al. (February 2012). "Split-spectrum amplitude-decorrelation angiography with optical coherence tomography" . Optics Express . 20 (4): 4710–4725. Bibcode :2012OExpr..20.4710J . doi :10.1364/OE.20.004710 . PMC 3381646 . PMID 22418228 .
^ Cite error: The named reference :0
was invoked but never defined (see the help page ).
^ Cite error: The named reference :1
was invoked but never defined (see the help page ).
^ a b c Jia Y, Bailey ST, Hwang TS, McClintic SM, Gao SS, Pennesi ME, et al. (May 2015). "Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye" . Proceedings of the National Academy of Sciences of the United States of America . 112 (18): E2395–E2402. Bibcode :2015PNAS..112E2395J . doi :10.1073/pnas.1500185112 . PMC 4426471 . PMID 25897021 .
^ Gao SS, Jia Y, Zhang M, Su JP, Liu G, Hwang TS, et al. (July 2016). "Optical Coherence Tomography Angiography" . Investigative Ophthalmology & Visual Science . 57 (9): OCT27–OCT36. doi :10.1167/iovs.15-19043 . PMC 4968919 . PMID 27409483 .
^ Hormel TT, Jia Y, Jian Y, Hwang TS, Bailey ST, Pennesi ME, et al. (January 2021). "Plexus-specific retinal vascular anatomy and pathologies as seen by projection-resolved optical coherence tomographic angiography" . Progress in Retinal and Eye Research . 80 : 100878. doi :10.1016/j.preteyeres.2020.100878 . PMC 7855241 . PMID 32712135 .
^ Kashani AH, Lee SY, Moshfeghi A, Durbin MK, Puliafito CA (November 2015). "Optical Coherence Tomography Angiography of Retinal Venous Occlusion". Retina . 35 (11): 2323–2331. doi :10.1097/iae.0000000000000811 . PMID 26457395 . S2CID 26880837 .
^ Spaide RF, Klancnik JM, Cooney MJ (January 2015). "Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography" . JAMA Ophthalmology . 133 (1): 45–50. doi :10.1001/jamaophthalmol.2014.3616 . PMID 25317632 .
^ Gildea D (October 2019). "The diagnostic value of optical coherence tomography angiography in diabetic retinopathy: a systematic review" . International Ophthalmology . 39 (10): 2413–2433. doi :10.1007/s10792-018-1034-8 . PMID 30382465 .
^ Camino A, Guo Y, You Q, Wang J, Huang D, Bailey ST, Jia Y (October 2019). "Detecting and measuring areas of choriocapillaris low perfusion in intermediate, non-neovascular age-related macular degeneration" . Neurophotonics . 6 (4): 041108. doi :10.1117/1.NPh.6.4.041108 . PMC 6739623 . PMID 31528658 .
^ You QS, Chan JC, Ng AL, Choy BK, Shih KC, Cheung JJ, et al. (November 2019). "Macular Vessel Density Measured With Optical Coherence Tomography Angiography and Its Associations in a Large Population-Based Study" . Investigative Ophthalmology & Visual Science . 60 (14): 4830–4837. doi :10.1167/iovs.19-28137 . PMID 31747685 . S2CID 208215569 .
^ Levison AL, Baynes KM, Lowder CY, Kaiser PK, Srivastava SK (May 2017). "Choroidal neovascularisation on optical coherence tomography angiography in punctate inner choroidopathy and multifocal choroiditis". The British Journal of Ophthalmology . 101 (5): 616–622. doi :10.1136/bjophthalmol-2016-308806 . PMID 27539089 . S2CID 29133966 .
^ Chu Z, Weinstein JE, Wang RK, Pepple KL (October 2020). "Quantitative Analysis of the Choriocapillaris in Uveitis Using En Face Swept-Source Optical Coherence Tomography Angiography" . American Journal of Ophthalmology . 218 : 17–27. doi :10.1016/j.ajo.2020.05.006 . PMC 7529782 . PMID 32413411 .
^ Xu J, Song S, Men S, Wang RK (November 2017). "Long ranging swept-source optical coherence tomography-based angiography outperforms its spectral-domain counterpart in imaging human skin microcirculations" . Journal of Biomedical Optics . 22 (11): 1–11. Bibcode :2017JBO....22k6007X . doi :10.1117/1.jbo.22.11.116007 . PMC 5712670 . PMID 29185292 .
^ Fischer MD, Huber G, Beck SC, Tanimoto N, Muehlfriedel R, Fahl E, et al. (October 2009). "Noninvasive, in vivo assessment of mouse retinal structure using optical coherence tomography" . PLOS ONE . 4 (10): e7507. Bibcode :2009PLoSO...4.7507F . doi :10.1371/journal.pone.0007507 . PMC 2759518 . PMID 19838301 .
^ Merkle CW, Zhu J, Bernucci MT, Srinivasan VJ (November 2019). "Dynamic Contrast Optical Coherence Tomography reveals laminar microvascular hemodynamics in the mouse neocortex in vivo" . NeuroImage . 202 : 116067. doi :10.1016/j.neuroimage.2019.116067 . PMC 6819266 . PMID 31394180 .
^ Chen S, Liu Q, Shu X, Soetikno B, Tong S, Zhang HF (September 2016). "Imaging hemodynamic response after ischemic stroke in mouse cortex using visible-light optical coherence tomography" . Biomedical Optics Express . 7 (9): 3377–3389. doi :10.1364/boe.7.003377 . PMC 5030017 . PMID 27699105 .
^ a b c d de Carlo TE, Romano A, Waheed NK, Duker JS (April 2015). "A review of optical coherence tomography angiography (OCTA)" . International Journal of Retina and Vitreous . 1 (1): 5. doi :10.1186/s40942-015-0005-8 . PMC 5066513 . PMID 27847598 .
^ Drexler W, Liu M, Kumar A, Kamali T, Unterhuber A, Leitgeb RA (2014). "Optical coherence tomography today: speed, contrast, and multimodality" . Journal of Biomedical Optics . 19 (7): 071412. Bibcode :2014JBO....19g1412D . doi :10.1117/1.jbo.19.7.071412 . PMID 25079820 .
^ Campbell JP, Zhang M, Hwang TS, Bailey ST, Wilson DJ, Jia Y, Huang D (February 2017). "Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography" . Scientific Reports . 7 (1): 42201. Bibcode :2017NatSR...742201C . doi :10.1038/srep42201 . PMC 5301488 . PMID 28186181 .
^ Jia Y, Bailey ST, Wilson DJ, Tan O, Klein ML, Flaxel CJ, et al. (July 2014). "Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration" . Ophthalmology . 121 (7): 1435–1444. doi :10.1016/j.ophtha.2014.01.034 . PMC 4082740 . PMID 24679442 .
^ Hwang TS, Jia Y, Gao SS, Bailey ST, Lauer AK, Flaxel CJ, et al. (November 2015). "Optical Coherence Tomography Angiography Features of Diabetic Retinopathy" . Retina . 35 (11): 2371–2376. doi :10.1097/IAE.0000000000000716 . PMC 4623938 . PMID 26308529 .
^ Hwang TS, Gao SS, Liu L, Lauer AK, Bailey ST, Flaxel CJ, et al. (April 2016). "Automated Quantification of Capillary Nonperfusion Using Optical Coherence Tomography Angiography in Diabetic Retinopathy" . JAMA Ophthalmology . 134 (4): 367–373. doi :10.1001/jamaophthalmol.2015.5658 . PMC 4978127 . PMID 26795548 .
^ Jia Y, Wei E, Wang X, Zhang X, Morrison JC, Parikh M, et al. (July 2014). "Optical coherence tomography angiography of optic disc perfusion in glaucoma" . Ophthalmology . 121 (7): 1322–1332. doi :10.1016/j.ophtha.2014.01.021 . PMC 4082728 . PMID 24629312 .