| |||
Names | |||
---|---|---|---|
Preferred IUPAC name
Methanetetrol[1] | |||
Systematic IUPAC name
Orthocarbonic acid | |||
Other names
| |||
Identifiers | |||
3D model (JSmol)
|
|||
ChemSpider | |||
PubChem CID
|
|||
CompTox Dashboard (EPA)
|
|||
| |||
| |||
Properties | |||
C(OH)4 | |||
Molar mass | 80.039 g·mol−1 | ||
Related compounds | |||
Other cations
|
|||
Related compounds
|
|||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Orthocarbonic acid, carbon hydroxide, methanetetrol is the name given to a hypothetical compound with the chemical formula H4CO4 or C(OH)4. Its molecular structure consists of a single carbon atom bonded to four hydroxyl groups. It would be therefore a fourfold alcohol. In theory it could lose four protons to give the hypothetical oxocarbon anion orthocarbonate CO4−4, and is therefore considered an oxoacid of carbon.
Orthocarbonic acid is highly unstable. Calculations show that it decomposes into carbonic acid and water:[2][3]
Orthocarbonic acid is one of the group of ortho acids that have the general structure of RC(OH)3. The term ortho acid is also used to refer to the most hydroxylated acid in a set of oxoacids.
Researchers predict that orthocarbonic acid is stable at high pressure; hence it may form in the interior of the ice giant planets Uranus and Neptune, where water and methane are common.[4]