P38 mitogen-activated protein kinases

mitogen-activated protein kinase 11
Identifiers
SymbolMAPK11
Alt. symbolsPRKM11
NCBI gene5600
HGNC6873
OMIM602898
RefSeqNM_002751
UniProtQ15759
Other data
EC number2.7.11.24
LocusChr. 22 q13.33
Search for
StructuresSwiss-model
DomainsInterPro
mitogen-activated protein kinase 12
Identifiers
SymbolMAPK12
Alt. symbolsSAPK3
NCBI gene6300
HGNC6874
OMIM602399
RefSeqNM_002969
UniProtP53778
Other data
EC number2.7.11.24
LocusChr. 22 q13.3
Search for
StructuresSwiss-model
DomainsInterPro
mitogen-activated protein kinase 13
Identifiers
SymbolMAPK13
Alt. symbolsPRKM13
NCBI gene5603
HGNC6875
OMIM602899
RefSeqNM_002754
UniProtO15264
Other data
EC number2.7.11.24
LocusChr. 6 p21
Search for
StructuresSwiss-model
DomainsInterPro
mitogen-activated protein kinase 14
Identifiers
SymbolMAPK14
Alt. symbolsCSPB1, CSBP1, CSBP2
NCBI gene1432
HGNC6876
OMIM600289
RefSeqNM_001315
UniProtQ16539
Other data
EC number2.7.11.24
LocusChr. 6 p21.3-21.2
Search for
StructuresSwiss-model
DomainsInterPro

p38 mitogen-activated protein kinases are a class of mitogen-activated protein kinases (MAPKs) that are responsive to stress stimuli, such as cytokines, ultraviolet irradiation, heat shock, and osmotic shock, and are involved in cell differentiation, apoptosis and autophagy. Persistent activation of the p38 MAPK pathway in muscle satellite cells (muscle stem cells) due to ageing, impairs muscle regeneration.[1][2]

p38 MAP Kinase (MAPK), also called RK or CSBP (Cytokinin Specific Binding Protein), is the mammalian orthologue of the yeast Hog1p MAP kinase,[3] which participates in a signaling cascade controlling cellular responses to cytokines and stress.

Four p38 MAP kinases, p38-α (MAPK14), -β (MAPK11), -γ (MAPK12 / ERK6), and -δ (MAPK13 / SAPK4), have been identified. Similar to the SAPK/JNK pathway, p38 MAP kinase is activated by a variety of cellular stresses including osmotic shock, inflammatory cytokines, lipopolysaccharides (LPS), ultraviolet light, and growth factors.

MKK3 and SEK activate p38 MAP kinase by phosphorylation at Thr-180 and Tyr-182. Activated p38 MAP kinase has been shown to phosphorylate and activate MAPKAP kinase 2 and to phosphorylate the transcription factors ATF2, Mac, MEF2, and p53.[4] p38 also has been shown to phosphorylate post-transcriptional regulating factors like TTP,[5] and in fruit flies it plays a role in regulating the circadian clock.[6]

  1. ^ Cosgrove BD, Gilbert PM, Porpiglia E, Mourkioti F, Lee SP, Corbel SY, Llewellyn ME, Delp SL, Blau HM (2014). "Rejuvenation of the muscle stem cell population restores strength to injured aged muscles". Nature Medicine. 20 (3): 255–64. doi:10.1038/nm.3464. PMC 3949152. PMID 24531378.
  2. ^ Segalés J, Perdiguero E, Muñoz-Cánoves P (2016). "Regulation of Muscle Stem Cell Functions: A Focus on the p38 MAPK Signaling Pathway". Frontiers in Cell and Developmental Biology. 4: 91. doi:10.3389/fcell.2016.00091. PMC 5003838. PMID 27626031.
  3. ^ Han J, Lee JD, Bibbs L, Ulevitch RJ (August 1994). "A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells". Science. 265 (5173): 808–11. Bibcode:1994Sci...265..808H. doi:10.1126/science.7914033. PMID 7914033.
  4. ^ She QB, Chen N, Dong Z (July 2000). "ERKs and p38 kinase phosphorylate p53 protein at serine 15 in response to UV radiation". Journal of Biological Chemistry. 275 (27): 20444–20449. doi:10.1074/jbc.M001020200. PMID 10781582.
  5. ^ Tudor C, Marchese FP, Hitti E, Aubareda A, Rawlinson L, Gaestel M, Blackshear PJ, Clark AR, Saklatvala J, Dean JL (June 2009). "The p38 MAPK pathway inhibits tristetraprolin-directed decay of interleukin-10 and pro-inflammatory mediator mRNAs in murine macrophages". FEBS Letters. 583 (12): 1933–8. doi:10.1016/j.febslet.2009.04.039. PMC 4798241. PMID 19416727.
  6. ^ Dusik V, Senthilan PR, Mentzel B, Hartlieb H, Wülbeck C, Yoshii T, Raabe T, Helfrich-Förster C (2014). "The MAP Kinase p38 Is Part of Drosophila melanogaster's Circadian Clock". PLOS Genetics. 10 (8): e1004565. doi:10.1371/journal.pgen.1004565. PMC 4140665. PMID 25144774.