P elements are transposable elements that were discovered in Drosophila as the causative agents of genetic traits called hybrid dysgenesis. The transposon is responsible for the P trait of the P element and it is found only in wild flies. They are also found in many other eukaryotes.[1]
The name was first suggested by evolutionary biologist Margaret Kidwell, who, together with James Kidwell and John Sved, researched hybrid dysgenesis in Drosophila. They referred to strains as P of paternal and M of maternal if they contributed to hybrid dysgenesis in this reproductive role.[2]
The P element encodes for an enzyme known as P transposase. Unlike laboratory-bred females, wild-type females are thought also to express an inhibitor to P transposase function, produced by the very same element. This inhibitor reduces the disruption to the genome caused by the movement of P elements, allowing fertile progeny. Evidence for this comes from crosses of laboratory females (which lack the P transposase inhibitor) with wild-type males (which have P elements). In the absence of the inhibitor, the P elements can proliferate throughout the genome, disrupting many genes and often proving lethal to progeny or rendering them sterile.
P elements are commonly used as mutagenic agents in genetic experiments with Drosophila. One advantage of this approach is that the mutations are easy to locate. In hybrid dysgenesis, one strain of Drosophila mates with another strain of Drosophila, producing hybrid offspring and causing chromosomal damage known to be dysgenic. Hybrid dysgenesis requires a contribution from both parents. For example, in the P-M system, where the P strain contributes paternally and M strain contributes maternally, dysgenesis can occur. The reverse cross, with an M cytotype father and a P mother, produces normal offspring, as it crosses in a P x P or M x M manner. P male chromosomes can cause dysgenesis when crossed with an M female.