Paleovirology

Paleovirology is the study of viruses that existed in the past but are now extinct. In general, viruses cannot leave behind physical fossils,[1] therefore indirect evidence is used to reconstruct the past. For example, viruses can cause evolution of their hosts, and the signatures of that evolution can be found and interpreted in the present day.[2] Also, some viral genetic fragments which were integrated into germline cells of an ancient organism have been passed down to our time as viral fossils,[2] or endogenous viral elements (EVEs).[3] EVEs that originate from the integration of retroviruses are known as endogenous retroviruses, or ERVs,[4] and most viral fossils are ERVs. They may preserve genetic code from millions of years ago, hence the "fossil" terminology, although no one has detected a virus in mineral fossils.[2] The most surprising viral fossils originate from non-retroviral DNA and RNA viruses.

  1. ^ Laidler, J.R.; Stedman, K.M. (2010). "Virus Silicification under Simulated Hot Spring Conditions". Astrobiology. 10 (6): 569–576. Bibcode:2010AsBio..10..569L. doi:10.1089/ast.2010.0463. PMID 20735248. S2CID 7274625.
  2. ^ a b c Emerman, M.; Malik, H.S. (2010). "Paleovirology – Modern Consequences of Ancient Viruses". PLOS Biology. 8 (2): e1000301. doi:10.1371/journal.pbio.1000301. PMC 2817711. PMID 20161719.
  3. ^ Katzourakis, Aris; Gifford, Robert J. (18 November 2010). "Endogenous Viral Elements in Animal Genomes". PLOS Genetics. 6 (11): e1001191. doi:10.1371/journal.pgen.1001191. PMC 2987831. PMID 21124940.
  4. ^ Weiss, RA (Oct 3, 2006). "The discovery of endogenous retroviruses". Retrovirology. 3: 67. doi:10.1186/1742-4690-3-67. PMC 1617120. PMID 17018135.