Pangenesis

Charles Darwin's pangenesis theory postulated that every part of the body emits tiny particles called gemmules which migrate to the gonads and are transferred to offspring. Gemmules were thought to develop into their associated body parts as offspring matures. The theory implied that changes to the body during an organism's life would be inherited, as proposed in Lamarckism.

Pangenesis was Charles Darwin's hypothetical mechanism for heredity, in which he proposed that each part of the body continually emitted its own type of small organic particles called gemmules that aggregated in the gonads, contributing heritable information to the gametes.[1] He presented this 'provisional hypothesis' in his 1868 work The Variation of Animals and Plants Under Domestication, intending it to fill what he perceived as a major gap in evolutionary theory at the time. The etymology of the word comes from the Greek words pan (a prefix meaning "whole", "encompassing") and genesis ("birth") or genos ("origin"). Pangenesis mirrored ideas originally formulated by Hippocrates and other pre-Darwinian scientists, but using new concepts such as cell theory, explaining cell development as beginning with gemmules which were specified to be necessary for the occurrence of new growths in an organism, both in initial development and regeneration.[2] It also accounted for regeneration and the Lamarckian concept of the inheritance of acquired characteristics, as a body part altered by the environment would produce altered gemmules. This made Pangenesis popular among the neo-Lamarckian school of evolutionary thought.[3] This hypothesis was made effectively obsolete after the 1900 rediscovery among biologists of Gregor Mendel's theory of the particulate nature of inheritance.

  1. ^ Holterhoff, Kate (2014). "The History and Reception of Charles Darwin's Hypothesis of Pangenesis". Journal of the History of Biology. 47 (4): 661–695. doi:10.1007/s10739-014-9377-0. PMID 24570302. S2CID 207150548.
  2. ^ de Beer, Gavin (1965). Charles Darwin: A Scientific Biography. Garden City, New York: Doubleday & Company. p. 203.
  3. ^ Cite error: The named reference :6 was invoked but never defined (see the help page).