Passive dynamics

Passive dynamics refers to the dynamical behavior of actuators, robots, or organisms when not drawing energy from a supply (e.g., batteries, fuel, ATP). Depending on the application, considering or altering the passive dynamics of a powered system can have drastic effects on performance, particularly energy economy, stability, and task bandwidth. Devices using no power source are considered "passive", and their behavior is fully described by their passive dynamics.

In some fields of robotics (legged robotics in particular), design and more relaxed control of passive dynamics has become a complementary (or even alternative) approach to joint-positioning control methods developed through the 20th century. Additionally, the passive dynamics of animals have been of interest to biomechanists and integrative biologists, as these dynamics often underlie biological motions and couple with neuromechanical control.

Particularly relevant fields for investigating and engineering passive dynamics include legged locomotion and manipulation.