This article may be too technical for most readers to understand.(February 2024) |
Depicting the Phosphatidylinisitol molecule with an overview of different segregated components; Inositol, Phosphate, Glycerol-backbone, sn-1 acyl chain, sn-2 acyl chain.
Made by Mathias Sollie Sandsdalen in BioRender.com, modified from N.J. Blunsom and S. Cockcroft.[1]
| |
Names | |
---|---|
IUPAC name
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-octadecanoyloxypropyl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate
| |
Other names
| |
Identifiers | |
ChEBI | |
DrugBank | |
Properties | |
C47H83O13P | |
Molar mass | 887,104 g/mol, neutral with fatty acid composition - 18:0, 20:4 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Phosphatidylinositol or inositol phospholipid is a biomolecule. It was initially called "inosite" when it was discovered by Léon Maquenne and Johann Joseph von Scherer in the late 19th century. It was discovered in bacteria but later also found in eukaryotes, and was found to be a signaling molecule.
The biomolecule can exist in 9 different isomers. It is a lipid which contains a phosphate group, two fatty acid chains, and one inositol sugar molecule. Typically, the phosphate group has a negative charge (at physiological pH values). As a result, the molecule is amphiphilic.
The production of the molecule is limited to the endoplasmic reticulum.