Phycobilin

Phycobilins (from Greek: φύκος (phykos) meaning "alga", and from Latin: bilis meaning "bile") are light-capturing bilins found in cyanobacteria and in the chloroplasts of red algae, glaucophytes and some cryptomonads (though not in green algae and plants).[1] Most of their molecules consist of a chromophore which makes them coloured.[1] They are unique among the photosynthetic pigments in that they are bonded to certain water-soluble proteins, known as phycobiliproteins. Phycobiliproteins then pass the light energy to chlorophylls for photosynthesis.[1]

The phycobilins are especially efficient at absorbing red, orange, yellow, and green light, wavelengths that are not well absorbed by chlorophyll a.[2] Organisms growing in shallow waters tend to contain phycobilins that can capture yellow/red light,[3] while those at greater depth often contain more of the phycobilins that can capture green light, which is relatively more abundant there.

The phycobilins fluoresce at a particular wavelength, and are, therefore, often used in research as chemical tags, e.g., by binding phycobiliproteins to antibodies in a technique known as immunofluorescence.[4]

  1. ^ a b c Frank, H. A.; Cogdell, R. J. (2012-01-01), Egelman, Edward H. (ed.), "8.6 Light Capture in Photosynthesis", Comprehensive Biophysics, Amsterdam: Elsevier, pp. 94–114, doi:10.1016/b978-0-12-374920-8.00808-0, ISBN 978-0-08-095718-0, retrieved 2024-01-04
  2. ^ González, A.; Sevilla, E.; Bes, M. T.; Peleato, M. L.; Fillat, M. F. (2016-01-01), "Chapter Five - Pivotal Role of Iron in the Regulation of Cyanobacterial Electron Transport", in Poole, Robert K. (ed.), Advances in Bacterial Electron Transport Systems and Their Regulation, Advances in Microbial Physiology, vol. 68, Academic Press, pp. 169–217, doi:10.1016/bs.ampbs.2016.02.005, PMID 27134024, retrieved 2024-01-04
  3. ^ Crichton, Robert R. (2012-01-01), Crichton, Robert R. (ed.), "Chapter 10 - Magnesium–Phosphate Metabolism and Photoreceptors", Biological Inorganic Chemistry (Second ed.), Oxford: Elsevier, pp. 197–214, doi:10.1016/b978-0-444-53782-9.00010-3, ISBN 978-0-444-53782-9, retrieved 2024-01-04
  4. ^ Mysliwa-Kurdziel, Beata; Solymosi, Katalin (2017). "Phycobilins and Phycobiliproteins Used in Food Industry and Medicine" (PDF). Mini-Reviews in Medicinal Chemistry. 17 (13): 1173–1193. doi:10.2174/1389557516666160912180155. PMID 27633748. S2CID 6563485.