Pinnick oxidation

Pinnick oxidation
Named after Harold W. Pinnick
Reaction type Organic redox reaction

The Pinnick oxidation is an organic reaction by which aldehydes can be oxidized into their corresponding carboxylic acids using sodium chlorite (NaClO2) under mild acidic conditions. It was originally developed by Lindgren and Nilsson.[1] The typical reaction conditions used today were developed by G. A. Kraus.[2][3] H.W. Pinnick later demonstrated that these conditions could be applied to oxidize α,β-unsaturated aldehydes.[4] There exist many different reactions to oxidize aldehydes, but only a few are amenable to a broad range of functional groups. The Pinnick oxidation has proven to be both tolerant of sensitive functionalities and capable of reacting with sterically hindered groups. This reaction is especially useful for oxidizing α,β-unsaturated aldehydes, and another one of its advantages is its relatively low cost.[4][5]

PinnickOxidationReaction
PinnickOxidationReaction
  1. ^ Lindgren, Bengt O.; Nilsson, Torsten; Husebye, Steinar; Mikalsen, ØYvind; Leander, Kurt; Swahn, Carl-Gunnar (1973). "Preparation of Carboxylic Acids from Aldehydes (Including Hydroxylated Benzaldehydes) by Oxidation with Chlorite". Acta Chem. Scand. 27: 888–890. doi:10.3891/acta.chem.scand.27-0888.
  2. ^ George A. Kraus; Bruce Roth (1980). "Synthetic studies toward verrucarol. 2. Synthesis of the AB ring system". J. Org. Chem. 45 (24): 4825–4830. doi:10.1021/jo01312a004.
  3. ^ George A. Kraus; Michael J. Taschner (1980). "Model studies for the synthesis of quassinoids. 1. Construction of the BCE ring system". J. Org. Chem. 45 (6): 1175–1176. doi:10.1021/jo01294a058.
  4. ^ a b Bal, B. S.; Childers, W.E.; Pinnick, H.W. (1981). "Oxidation of α,β-Unsaturated Aldehydes". Tetrahedron. 37 (11): 2091–2096. doi:10.1016/S0040-4020(01)97963-3.
  5. ^ Mundy, B. J.; Ellerd, Michael G.; Favaloro, Frank G. (2005). "Pinnick Oxidation". Name Reactions and Reagents in Organic Synthesis. John Wiley & Sons. p. 518. ISBN 978-0-471-22854-7.