This article may be too technical for most readers to understand.(June 2023) |
In aerodynamics, the pitching moment on an airfoil is the moment (or torque) produced by the aerodynamic force on the airfoil if that aerodynamic force is considered to be applied, not at the center of pressure, but at the aerodynamic center of the airfoil. The pitching moment on the wing of an airplane is part of the total moment that must be balanced using the lift on the horizontal stabilizer.[1]: Section 5.3 More generally, a pitching moment is any moment acting on the pitch axis of a moving body.
The lift on an airfoil is a distributed force that can be said to act at a point called the center of pressure. However, as angle of attack changes on a cambered airfoil, there is movement of the center of pressure forward and aft. This makes analysis difficult when attempting to use the concept of the center of pressure. One of the remarkable properties of a cambered airfoil is that, even though the center of pressure moves forward and aft, if the lift is imagined to act at a point called the aerodynamic center, the moment of the lift force changes in proportion to the square of the airspeed. If the moment is divided by the dynamic pressure, the area and chord of the airfoil, the result is known as the pitching moment coefficient. This coefficient changes only a little over the operating range of angle of attack of the airfoil.
The moment coefficient for a whole airplane is not the same as that of its wing. The figure on the right shows the variation of moment with AoA for a stable airplane. The negative slope for positive α indicates stability in pitch. The combination of the two concepts of aerodynamic center and pitching moment coefficient make it relatively simple to analyse some of the flight characteristics of an aircraft.[1]: Section 5.10