Poisson manifold

In differential geometry, a field in mathematics, a Poisson manifold is a smooth manifold endowed with a Poisson structure. The notion of Poisson manifold generalises that of symplectic manifold, which in turn generalises the phase space from Hamiltonian mechanics.

A Poisson structure (or Poisson bracket) on a smooth manifold is a functionon the vector space of smooth functions on , making it into a Lie algebra subject to a Leibniz rule (also known as a Poisson algebra).

Poisson structures on manifolds were introduced by André Lichnerowicz in 1977[1] and are named after the French mathematician Siméon Denis Poisson, due to their early appearance in his works on analytical mechanics.[2]

  1. ^ Cite error: The named reference :0 was invoked but never defined (see the help page).
  2. ^ Cite error: The named reference :5 was invoked but never defined (see the help page).