Polyphenol oxidase

Catechol oxidase
Identifiers
EC no.1.10.3.2
Alt. namesPolyphenol oxidase
Databases
IntEnzIntEnz view
BRENDABRENDA entry
ExPASyNiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Search
PMCarticles
PubMedarticles
NCBIproteins

Polyphenol oxidase (PPO; also polyphenol oxidase i, chloroplastic), an enzyme involved in fruit browning, is a tetramer that contains four atoms of copper per molecule.[1]

PPO may accept monophenols and/or o-diphenols as substrates.[2] The enzyme works by catalyzing the o-hydroxylation of monophenol molecules in which the benzene ring contains a single hydroxyl substituent to o-diphenols (phenol molecules containing two hydroxyl substituents at the 1, 2 positions, with no carbon between).[3] It can also further catalyse the oxidation of o-diphenols to produce o-quinones.[4] PPO catalyses the rapid polymerization of o-quinones to produce black, brown or red pigments (polyphenols) that cause fruit browning.

The amino acid tyrosine contains a single phenolic ring that may be oxidised by the action of PPOs to form o-quinone. Hence, PPOs may also be referred to as tyrosinases.[5]

Common foods producing the enzyme include mushrooms (Agaricus bisporus),[6][7] apples (Malus domestica),[8][9] avocados (Persea americana), and lettuce (Lactuca sativa).[10]

  1. ^ "Polyphenol Oxidase". Worthington Enzyme Manual. Retrieved 13 September 2011.
  2. ^ McLarin, Mark-Anthony; Leung, Ivanhoe K. H. (2020). "Substrate Specificity of Polyphenol Oxidase". Crit. Rev. Biochem. Mol. Biol. 55 (3): 274–308. doi:10.1080/10409238.2020.1768209. PMID 32441137. S2CID 218831573.
  3. ^ A Sánchez-Ferrer; J N Rodríguez-López; F García-Cánovas; F García-Carmona (1995). "Tyrosinase: A Comprehensive Review of Its Mechanism". Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology. 1247 (1): 1–11. doi:10.1016/0167-4838(94)00204-t. PMID 7873577.
  4. ^ C Eicken; B Krebs; J C Sacchettini (1999). "Catechol Oxidase - Structure and Activity". Current Opinion in Structural Biology. 9 (6): 677–683. doi:10.1016/s0959-440x(99)00029-9. PMID 10607672.
  5. ^ Mayer AM (November 2006). "Polyphenol oxidases in plants and fungi: going places? A review". Phytochemistry. 67 (21): 2318–31. Bibcode:2006PChem..67.2318M. doi:10.1016/j.phytochem.2006.08.006. PMID 16973188.
  6. ^ Mauracher SG, Molitor C, Michael C, Kragl M, Rizzi A, Rompel A (March 2014). "High level protein-purification allows the unambiguous polypeptide determination of latent isoform PPO4 of mushroom tyrosinase". Phytochemistry. 99: 14–25. Bibcode:2014PChem..99...14M. doi:10.1016/j.phytochem.2013.12.016. PMC 3969299. PMID 24461779.
  7. ^ Mauracher SG, Molitor C, Al-Oweini R, Kortz U, Rompel A (September 2014). "Latent and active abPPO4 mushroom tyrosinase cocrystallized with hexatungstotellurate(VI) in a single crystal". Acta Crystallographica. Section D, Biological Crystallography. 70 (Pt 9): 2301–15. doi:10.1107/S1399004714013777. PMC 4157443. PMID 25195745.
  8. ^ Kampatsikas I, Bijelic A, Pretzler M, Rompel A (August 2017). "Three recombinantly expressed apple tyrosinases suggest the amino acids responsible for mono- versus diphenolase activity in plant polyphenol oxidases". Scientific Reports. 7 (1): 8860. Bibcode:2017NatSR...7.8860K. doi:10.1038/s41598-017-08097-5. PMC 5562730. PMID 28821733.
  9. ^ Kampatsikas I, Bijelic A, Pretzler M, Rompel A (May 2019). "A Peptide-Induced Self-Cleavage Reaction Initiates the Activation of Tyrosinase". Angewandte Chemie. 58 (22): 7475–7479. doi:10.1002/anie.201901332. PMC 6563526. PMID 30825403.
  10. ^ Toledo L, Aguirre C (December 2017). "Enzymatic browning in avocado (Persea americana) revisited: History, advances, and future perspectives". Critical Reviews in Food Science and Nutrition. 57 (18): 3860–3872. doi:10.1080/10408398.2016.1175416. PMID 27172067. S2CID 205692816.