Polystick

In recreational mathematics, a polystick (or polyedge) is a polyform with a line segment (a 'stick') as the basic shape. A polystick is a connected set of segments in a regular grid. A square polystick is a connected subset of a regular square grid. A triangular polystick is a connected subset of a regular triangular grid. Polysticks are classified according to how many line segments they contain.[1]

The name "polystick" seems to have been first coined by Brian R. Barwell.[2]

The names "polytrig"[3] and "polytwigs"[4] has been proposed by David Goodger to simplify the phrases "triangular-grid polysticks" and "hexagonal-grid polysticks," respectively. Colin F. Brown has used an earlier term "polycules" for the hexagonal-grid polysticks due to their appearance resembling the spicules of sea sponges.[4]

There is no standard term for line segments built on other regular tilings, an unstructured grid, or a simple connected graph, but both "polynema" and "polyedge" have been proposed.[5]

When reflections are considered distinct we have the one-sided polysticks. When rotations and reflections are not considered to be distinct shapes, we have the free polysticks. Thus, for example, there are 7 one-sided square tristicks because two of the five shapes have left and right versions.[1][6]


Square Polysticks

Sticks Name Free OEISA019988 One-Sided OEISA151537
1 monostick 1 1
2 distick 2 2
3 tristick 5 7
4 tetrastick 16 25
5 pentastick 55 99
6 hexastick 222 416
7 heptastick 950 1854

Hexagonal Polysticks

Sticks Name Free OEISA197459 One-Sided OEISA197460
1 monotwig 1 1
2 ditwig 1 1
3 tritwigs 3 4
4 tetratwigs 4 6
5 pentatwigs 12 19
6 hexatwigs 27 49
7 heptatwigs 78 143

Triangular Polysticks

Sticks Name Free OEISA159867 One-Sided OEISA151539
1 monostick 1 1
2 distick 3 3
3 tristick 12 19
4 tetrastick 60 104
5 pentastick 375 719
6 hexastick 2613 5123
7 heptastick 19074 37936


The set of n-sticks that contain no closed loops is equivalent, with some duplications, to the set of (n+1)-ominos, as each vertex at the end of every line segment can be replaced with a single square of a polyomino. For example, the set of tristicks is equivalent to the set of Tetrominos. In general, an n-stick with m loops is equivalent to a (nm+1)-omino (as each loop means that one line segment does not add a vertex to the figure).

  1. ^ a b Weisstein, Eric W. "Polystick." From MathWorld
  2. ^ Brian R. Barwell, "Polysticks," Journal of Recreational Mathematics volume 22 issue 3 (1990), p.165-175
  3. ^ David Goodger, "An Introduction to Polytrigs (Triangular-Grid Polysticks)," (2015), http://puzzler.sourceforge.net/docs/polytrigs-intro.html
  4. ^ a b David Goodger, "An Introduction to Polytwigs (Hexagonal-Grid Polysticks)," (2015), http://puzzler.sourceforge.net/docs/polytwigs-intro.html
  5. ^ "Polynema -- from Wolfram MathWorld".
  6. ^ Counting polyforms, at the Solitaire Laboratory