Positional game

A positional game[1][2] is a kind of a combinatorial game for two players. It is described by:

  •  – a finite set of elements. Often is called the board and its elements are called positions.
  •  – a family of subsets of . These subsets are usually called the winning sets.
  • A criterion for winning the game.

During the game, players alternately claim previously-unclaimed positions, until one of the players wins. If all positions in are taken while no player wins, the game is considered a draw.

The classic example of a positional game is tic-tac-toe. In it, contains the 9 squares of the game-board, contains the 8 lines that determine a victory (3 horizontal, 3 vertical and 2 diagonal), and the winning criterion is: the first player who holds an entire winning-set wins. Other examples of positional games are Hex and the Shannon switching game.

For every positional game there are exactly three options: either the first player has a winning strategy, or the second player has a winning strategy, or both players have strategies to enforce a draw.[2]: 7  The main question of interest in the study of these games is which of these three options holds in any particular game.

A positional game is finite, deterministic and has perfect information; therefore, in theory it is possible to create the full game tree and determine which of these three options holds. In practice, however, the game-tree might be enormous. Therefore, positional games are usually analyzed via more sophisticated combinatorial techniques.

  1. ^ Beck, József (2008). Combinatorial Games: Tic-Tac-Toe Theory. Cambridge: Cambridge University Press. ISBN 978-0-521-46100-9.
  2. ^ a b Hefetz, Dan; Krivelevich, Michael; Stojaković, Miloš; Szabó, Tibor (2014). Positional Games. Oberwolfach Seminars. Vol. 44. Basel: Birkhäuser Verlag GmbH. ISBN 978-3-0348-0824-8.