Positive operator

In mathematics (specifically linear algebra, operator theory, and functional analysis) as well as physics, a linear operator acting on an inner product space is called positive-semidefinite (or non-negative) if, for every , and , where is the domain of . Positive-semidefinite operators are denoted as . The operator is said to be positive-definite, and written , if for all .[1]

Many authors define a positive operator to be a self-adjoint (or at least symmetric) non-negative operator. We show below that for a complex Hilbert space the self adjointness follows automatically from non-negativity. For a real Hilbert space non-negativity does not imply self adjointness.

In physics (specifically quantum mechanics), such operators represent quantum states, via the density matrix formalism.

  1. ^ Roman 2008, p. 250 §10