Process to convert electric power into hydrogen or methane
This article needs to be updated. Please help update this article to reflect recent events or newly available information.(July 2020)
Power-to-gas (often abbreviated P2G) is a technology that uses electric power to produce a gaseous fuel.[1]
Most P2G systems use electrolysis to produce hydrogen. The hydrogen can be used directly,[2] or further steps (known as two-stage P2G systems) may convert the hydrogen into syngas, methane,[3] or LPG.[4]
Single-stage P2G systems to produce methane also exist, such as reversible solid oxide cell (rSOC) technology.[5]
The gas may be used as chemical feedstock, or converted back into electricity using conventional generators such as gas turbines.[6] Power-to-gas allows energy from electricity to be stored and transported in the form of compressed gas, often using existing infrastructure for long-term transport and storage of natural gas. P2G is often considered the most promising technology for seasonal renewable energy storage.[7][8]
^Bünger, U.; Landinger, H.; Pschorr-Schoberer, E.; Schmidt, P.; Weindorf, W.; Jöhrens, J.; Lambrecht, U.; Naumann, K.; Lischke, A. (11 June 2014). Power to gas in transport-Status quo and perspectives for development(PDF) (Report). Federal Ministry of Transport and Digital Infrastructure (BMVI), Germany. Retrieved 3 June 2021.
^Mogensen MB, Chen M, Frandsen HL, Graves C, Hansen JB, Hansen KV, Hauch A, Jacobsen T, Jensen SH, Skafte TL, Sun X (September 2019). "Reversible solid-oxide cells for clean and sustainable energy". Clean Energy. 3 (3): 175–201. doi:10.1093/ce/zkz023. over 100 times more solar photovoltaic energy than necessary is readily accessible and that practically available wind alone may deliver sufficient energy supply to the world. Due to the intermittency of these sources, effective and inexpensive energy-conversion and storage technology is needed. Motivation for the possible electrolysis application of reversible solid-oxide cells (RSOCs), including a comparison of power-to-fuel/fuel-to-power to other energy-conversion and storage technologies is presented.
^Andrews, John; Shabani, Bahman (January 2012). "Re-envisioning the role of hydrogen in a sustainable energy economy". International Journal of Hydrogen Energy. 37 (2): 1184–1203. doi:10.1016/j.ijhydene.2011.09.137.