Primitive root modulo n

In modular arithmetic, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n. That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which gka (mod n). Such a value k is called the index or discrete logarithm of a to the base g modulo n. So g is a primitive root modulo n if and only if g is a generator of the multiplicative group of integers modulo n.

Gauss defined primitive roots in Article 57 of the Disquisitiones Arithmeticae (1801), where he credited Euler with coining the term. In Article 56 he stated that Lambert and Euler knew of them, but he was the first to rigorously demonstrate that primitive roots exist for a prime n. In fact, the Disquisitiones contains two proofs: The one in Article 54 is a nonconstructive existence proof, while the proof in Article 55 is constructive.

A primitive root exists if and only if n is 1, 2, 4, pk or 2pk, where p is an odd prime and k > 0. For all other values of n the multiplicative group of integers modulo n is not cyclic.[1][2][3] This was first proved by Gauss.[4]

  1. ^ Weisstein, Eric W. "Modulo Multiplication Group". MathWorld.
  2. ^ Primitive root, Encyclopedia of Mathematics
  3. ^ (Vinogradov 2003, pp. 105–121, § VI PRIMITIVE ROOTS AND INDICES)
  4. ^ (Gauss 1986, arts. 52–56, 82–891)