Compound of n p/q-gonal antiprisms | |||
---|---|---|---|
n=2
| |||
Type | Uniform compound | ||
Index |
| ||
Polyhedra | n p/q-gonal antiprisms | ||
Schläfli symbols (n=2) |
ß{2,2p/q} ßr{2,p/q} | ||
Coxeter diagrams (n=2) |
|||
Faces | 2n {p/q} (unless p/q=2), 2np triangles | ||
Edges | 4np | ||
Vertices | 2np | ||
Symmetry group |
| ||
Subgroup restricting to one constituent |
|
In geometry, a prismatic compound of antiprism is a category of uniform polyhedron compound. Each member of this infinite family of uniform polyhedron compounds is a symmetric arrangement of antiprisms sharing a common axis of rotational symmetry.