Privacy and blockchain

A blockchain is a shared database that records transactions between two parties in an immutable ledger.[1] Blockchain documents and confirms pseudonymous ownership of all transactions in a verifiable and sustainable way.[2] After a transaction is validated and cryptographically verified by other participants or nodes in the network, it is made into a "block" on the blockchain.[1] A block contains information about the time the transaction occurred, previous transactions, and details about the transaction.[1] Once recorded as a block, transactions are ordered chronologically and cannot be altered.[1] This technology rose to popularity after the creation of Bitcoin, the first application of blockchain technology, which has since catalyzed other cryptocurrencies and applications.[3]

Due to its nature of decentralization, transactions and data are not verified and owned by one single entity as they are in centralized data base systems. Rather, the validity of transactions is confirmed by the form of majority-rule in which nodes or computers that have access to the network, if the network comes to a consensus of the new transaction then it is added.[4] Blockchain technology secures and authenticates transactions and data through cryptography.[5] With the rise and widespread adoption of technology, data breaches have become frequent.[6] User information and data are often stored, mishandled, and misused, causing a threat to personal privacy.[5] Advocates argue for the widespread adoption of blockchain technology because of its ability to increase user privacy, data protection, and data ownership.[5]

  1. ^ a b c d "BlockChain Technology: Beyond Bitcoin" (PDF).
  2. ^ Iansiti, Marco; Lakhani, Karim R. (2017-01-01). "The Truth About Blockchain". Harvard Business Review. ISSN 0017-8012. Retrieved 2022-04-27.
  3. ^ "Blockchain - What it is, and a non-financial use case" (PDF). KTH Royal Institute of Technology. S2CID 27665746.
  4. ^ Nofer, Michael; Gomber, Peter; Hinz, Oliver; Schiereck, Dirk (2017-06-01). "Blockchain". Business & Information Systems Engineering. 59 (3): 183–187. doi:10.1007/s12599-017-0467-3. ISSN 1867-0202. S2CID 212620853.
  5. ^ a b c Kshetri, Nir (2017). "Blockchain's roles in strengthening cybersecurity and protecting privacy" (PDF). Telecommunications Policy. 41 (10): 1027–1038. doi:10.1016/j.telpol.2017.09.003.
  6. ^ Dagher, Gaby G.; et al. (2018). "Ancile: Privacy-Preserving Framework for Access Control and Interoperability of Electronic Health Records Using Blockchain Technology". Sustainable Cities and Society. 39: 283–297. doi:10.1016/j.scs.2018.02.014.