Procrustes analysis

Procrustes superimposition. The figure shows the three transformation steps of an ordinary Procrustes fit for two configurations of landmarks. (a) Scaling of both configurations to the same size; (b) Transposition to the same position of the center of gravity; (c) Rotation to the orientation that provides the minimum sum of squared distances between corresponding landmarks.

In statistics, Procrustes analysis is a form of statistical shape analysis used to analyse the distribution of a set of shapes. The name Procrustes (Greek: Προκρούστης) refers to a bandit from Greek mythology who made his victims fit his bed either by stretching their limbs or cutting them off.

In mathematics:

  • an orthogonal Procrustes problem is a method which can be used to find out the optimal rotation and/or reflection (i.e., the optimal orthogonal linear transformation) for the Procrustes Superimposition (PS) of an object with respect to another.
  • a constrained orthogonal Procrustes problem, subject to det(R) = 1 (where R is an orthogonal matrix), is a method which can be used to determine the optimal rotation for the PS of an object with respect to another (reflection is not allowed). In some contexts, this method is called the Kabsch algorithm.

When a shape is compared to another, or a set of shapes is compared to an arbitrarily selected reference shape, Procrustes analysis is sometimes further qualified as classical or ordinary, as opposed to generalized Procrustes analysis (GPA), which compares three or more shapes to an optimally determined "mean shape".