This article needs additional citations for verification. (March 2019) |
A pulsational pair-instability supernova is a supernova impostor event that generally occurs in stars at around 100 to 130 solar mass (M☉), as opposed to a typical pair-instability supernova which occurs in stars of 130 to 250 M☉. Like pair-instability supernovae, pulsational pair-instability supernovae are caused by draining of a star's energy in the production of electron-positron pairs but, whereas a pair-instability supernova completely disrupts the star in a massive supernova, the star's pulsational pair-instability eruption sheds 10–25 M☉. This generally shrinks it down to a mass of less than 100 M☉, too small for electron-positron pair creation, where it then undergoes a core-collapse supernova or hypernova. It is possible that this is what occurred during the 1843 eruption of the primary star of the Eta Carinae star system although there is no substantial evidence supporting this.