A Pythagorean tiling or two squares tessellation is a tiling of a Euclidean plane by squares of two different sizes, in which each square touches four squares of the other size on its four sides. Many proofs of the Pythagorean theorem are based on it,[2] explaining its name.[1] It is commonly used as a pattern for floor tiles. When used for this, it is also known as a hopscotch pattern[3] or pinwheel pattern,[4] but it should not be confused with the mathematical pinwheel tiling, an unrelated pattern.[5]
This tiling has four-way rotational symmetry around each of its squares. When the ratio of the side lengths of the two squares is an irrational number such as the golden ratio, its cross-sections form aperiodic sequences with a similar recursive structure to the Fibonacci word. Generalizations of this tiling to three dimensions have also been studied.
rbn
was invoked but never defined (see the help page).