Quadratic unconstrained binary optimization

Quadratic unconstrained binary optimization (QUBO), also known as unconstrained binary quadratic programming (UBQP), is a combinatorial optimization problem with a wide range of applications from finance and economics to machine learning.[1] QUBO is an NP hard problem, and for many classical problems from theoretical computer science, like maximum cut, graph coloring and the partition problem, embeddings into QUBO have been formulated.[2][3] Embeddings for machine learning models include support-vector machines, clustering and probabilistic graphical models.[4] Moreover, due to its close connection to Ising models, QUBO constitutes a central problem class for adiabatic quantum computation, where it is solved through a physical process called quantum annealing.[5]

  1. ^ Kochenberger, Gary; Hao, Jin-Kao; Glover, Fred; Lewis, Mark; Lu, Zhipeng; Wang, Haibo; Wang, Yang (2014). "The unconstrained binary quadratic programming problem: a survey" (PDF). Journal of Combinatorial Optimization. 28: 58–81. doi:10.1007/s10878-014-9734-0. S2CID 16808394.
  2. ^ Glover, Fred; Kochenberger, Gary (2019). "A Tutorial on Formulating and Using QUBO Models". arXiv:1811.11538 [cs.DS].
  3. ^ Lucas, Andrew (2014). "Ising formulations of many NP problems". Frontiers in Physics. 2: 5. arXiv:1302.5843. Bibcode:2014FrP.....2....5L. doi:10.3389/fphy.2014.00005.
  4. ^ Mücke, Sascha; Piatkowski, Nico; Morik, Katharina (2019). "Learning Bit by Bit: Extracting the Essence of Machine Learning" (PDF). LWDA. S2CID 202760166. Archived from the original (PDF) on 2020-02-27.
  5. ^ Tom Simonite (8 May 2013). "D-Wave's Quantum Computer Goes to the Races, Wins". MIT Technology Review. Archived from the original on 24 September 2015. Retrieved 12 May 2013.