Quantum chemistry composite methods

Quantum chemistry composite methods (also referred to as thermochemical recipes)[1][2] are computational chemistry methods that aim for high accuracy by combining the results of several calculations. They combine methods with a high level of theory and a small basis set with methods that employ lower levels of theory with larger basis sets. They are commonly used to calculate thermodynamic quantities such as enthalpies of formation, atomization energies, ionization energies and electron affinities. They aim for chemical accuracy which is usually defined as within 1 kcal/mol of the experimental value. The first systematic model chemistry of this type with broad applicability was called Gaussian-1 (G1) introduced by John Pople. This was quickly replaced by the Gaussian-2 (G2) which has been used extensively. The Gaussian-3 (G3) was introduced later.

  1. ^ Ohlinger, William S.; Philip E. Klunzinger; Bernard J. Deppmeier; Warren J. Hehre (January 2009). "Efficient Calculation of Heats of Formation". The Journal of Physical Chemistry A. 113 (10). ACS Publications: 2165–2175. Bibcode:2009JPCA..113.2165O. doi:10.1021/jp810144q. PMID 19222177.
  2. ^ A. Karton (2016). "A computational chemist's guide to accurate thermochemistry for organic molecules" (PDF). Wiley Interdisciplinary Reviews: Computational Molecular Science. 6 (3): 292–310. doi:10.1002/wcms.1249. S2CID 102248364.