Quantum machine

The quantum machine, developed by Aaron D. O'Connell. The mechanical resonator is located to the lower left of the coupling capacitor (small white square). The qubit is connected to upper right of the coupling capacitor.

A quantum machine is a human-made device whose collective motion follows the laws of quantum mechanics. The idea that macroscopic objects may follow the laws of quantum mechanics dates back to the advent of quantum mechanics in the early 20th century.[1][2] However, as highlighted by the Schrödinger's cat thought experiment, quantum effects are not readily observable in large-scale objects.[citation needed] Consequently, quantum states of motion have only been observed in special circumstances at extremely low temperatures. The fragility of quantum effects in macroscopic objects may arise from rapid quantum decoherence.[3] Researchers created the first quantum machine in 2009, and the achievement was named the "Breakthrough of the Year" by Science in 2010.

  1. ^ Schrödinger, E. (1935). "The present situation in quantum mechanics". Naturwissenschaften. 23 (48): 807–812, 823–828, 844–849. Bibcode:1935NW.....23..807S. doi:10.1007/BF01491891. S2CID 206795705.
  2. ^ Leggett, A. J. (2002). "Testing the limits of quantum mechanics: motivation, state of play, prospects". J. Phys.: Condens. Matter. 14 (15): R415–R451. Bibcode:2002JPCM...14R.415L. CiteSeerX 10.1.1.205.4849. doi:10.1088/0953-8984/14/15/201. S2CID 250911999..
  3. ^ Zurek, W. H. (2003). "Decoherence, einselection, and the quantum origins of the classical". Reviews of Modern Physics. 75 (3): 715–765. arXiv:quant-ph/0105127. Bibcode:2003RvMP...75..715Z. doi:10.1103/RevModPhys.75.715. S2CID 14759237.