quarter 5-cubic honeycomb | |
---|---|
(No image) | |
Type | Uniform 5-honeycomb |
Family | Quarter hypercubic honeycomb |
Schläfli symbol | q{4,3,3,3,4} |
Coxeter-Dynkin diagram | = |
5-face type | h{4,33}, h4{4,33}, |
Vertex figure | Rectified 5-cell antiprism or Stretched birectified 5-simplex |
Coxeter group | ×2 = [[31,1,3,31,1]] |
Dual | |
Properties | vertex-transitive |
In five-dimensional Euclidean geometry, the quarter 5-cubic honeycomb is a uniform space-filling tessellation (or honeycomb). It has half the vertices of the 5-demicubic honeycomb, and a quarter of the vertices of a 5-cube honeycomb.[1] Its facets are 5-demicubes and runcinated 5-demicubes.