In geometry, the quarter hypercubic honeycomb (or quarter n-cubic honeycomb) is a dimensional infinite series of honeycombs, based on the hypercube honeycomb. It is given a Schläfli symbol q{4,3...3,4} or Coxeter symbol qδ4 representing the regular form with three quarters of the vertices removed and containing the symmetry of Coxeter group for n ≥ 5, with = and for quarter n-cubic honeycombs = .[1]
qδn | Name | Schläfli symbol |
Coxeter diagrams | Facets | Vertex figure | ||
---|---|---|---|---|---|---|---|
qδ3 | quarter square tiling |
q{4,4} | or
or |
h{4}={2} | { }×{ } | { }×{ } | |
qδ4 | quarter cubic honeycomb |
q{4,3,4} | or or |
h{4,3} |
h2{4,3} |
Elongated triangular antiprism | |
qδ5 | quarter tesseractic honeycomb | q{4,32,4} | or or |
h{4,32} |
h3{4,32} |
{3,4}×{} | |
qδ6 | quarter 5-cubic honeycomb | q{4,33,4} | h{4,33} |
h4{4,33} |
Rectified 5-cell antiprism | ||
qδ7 | quarter 6-cubic honeycomb | q{4,34,4} | h{4,34} |
h5{4,34} |
{3,3}×{3,3} | ||
qδ8 | quarter 7-cubic honeycomb | q{4,35,4} | h{4,35} |
h6{4,35} |
{3,3}×{3,31,1} | ||
qδ9 | quarter 8-cubic honeycomb | q{4,36,4} | h{4,36} |
h7{4,36} |
{3,3}×{3,32,1} {3,31,1}×{3,31,1} | ||
qδn | quarter n-cubic honeycomb | q{4,3n-3,4} | ... | h{4,3n-2} | hn-2{4,3n-2} | ... |