Rainer Weiss

Rainer Weiss
Weiss in June 2018
Born (1932-09-29) September 29, 1932 (age 92)
EducationMassachusetts Institute of Technology (BS, PhD)
Known forPioneering laser interferometric gravitational wave observation
AwardsEinstein Prize (2007)
Special Breakthrough Prize in Fundamental Physics (2016)
Gruber Prize in Cosmology (2016)
Shaw Prize (2016)
Kavli Prize (2016)
Harvey Prize (2016)
Princess of Asturias Award (2017)
Nobel Prize in Physics (2017)
Scientific career
FieldsPhysics
Laser physics
Experimental gravitation
Cosmic background measurements
InstitutionsMassachusetts Institute of Technology
Princeton University
Tufts University
ThesisStark Effect and Hyperfine Structure of Hydrogen Fluoride (1962)
Doctoral advisorJerrold R. Zacharias
Doctoral studentsNergis Mavalvala
Philip K. Chapman
Rana X. Adhikari
Other notable studentsBruce Allen
Sarah Veatch
Rainer Weiss during Nobel Prize press conference in Stockholm, December 2017

Rainer "Rai" Weiss (/ws/ WYSSE, German: [vaɪs]; born September 29, 1932) is a German-born American physicist, known for his contributions in gravitational physics and astrophysics. He is a professor of physics emeritus at MIT and an adjunct professor at LSU. He is best known for inventing the laser interferometric technique which is the basic operation of LIGO. He was Chair of the COBE Science Working Group.[1][2][3]

In 2017, Weiss was awarded the Nobel Prize in Physics, along with Kip Thorne and Barry Barish, "for decisive contributions to the LIGO detector and the observation of gravitational waves".[4][5][6][7]

Weiss has helped realize a number of challenging experimental tests of fundamental physics. He is a member of the Fermilab Holometer experiment, which uses a 40m laser interferometer to measure properties of space and time at quantum scale and provide Planck-precision tests of quantum holographic fluctuation.[8][9]

  1. ^ Lars Brink (June 2, 2014). Nobel Lectures in Physics (2006–2010). World Scientific. pp. 25–. ISBN 978-981-4612-70-8.
  2. ^ "NASA and COBE Scientists Win Top Cosmology Prize". NASA. 2006. Archived from the original on March 3, 2016. Retrieved February 22, 2016.
  3. ^ Weiss, Rainer (1980). "Measurements of the Cosmic Background Radiation". Annu. Rev. Astron. Astrophys. 18: 489–535. Bibcode:1980ARA&A..18..489W. doi:10.1146/annurev.aa.18.090180.002421.
  4. ^ "The Nobel Prize in Physics 2017". The Nobel Foundation. October 3, 2017. Retrieved October 3, 2017.
  5. ^ Rincon, Paul; Amos, Jonathan (October 3, 2017). "Einstein's waves win Nobel Prize". BBC News. Retrieved October 3, 2017.
  6. ^ Overbye, Dennis (October 3, 2017). "2017 Nobel Prize in Physics Awarded to LIGO Black Hole Researchers". The New York Times. Retrieved October 3, 2017.
  7. ^ Kaiser, David (October 3, 2017). "Learning from Gravitational Waves". The New York Times. Retrieved October 3, 2017.
  8. ^ Emily Tapp (October 6, 2017). "Why we built the Holometer". IOP, Classical and Quantum Gravity journal. Retrieved October 22, 2017.
  9. ^ Aaron Chou; et al. (2017). "The Holometer: an instrument to probe Planckian quantum geometry". Class. Quantum Grav. 34 (6): 065005. arXiv:1611.08265. Bibcode:2017CQGra..34f5005C. doi:10.1088/1361-6382/aa5e5c. S2CID 119065032.