Randomized benchmarking

Randomized benchmarking is an experimental method for measuring the average error rates of quantum computing hardware platforms. The protocol estimates the average error rates by implementing long sequences of randomly sampled quantum gate operations.[1] Randomized benchmarking is the industry-standard protocol used by quantum hardware developers such as IBM[2] and Google [3] to test the performance of the quantum operations.

The original theory of randomized benchmarking, proposed by Joseph Emerson and collaborators,[1] considered the implementation of sequences of Haar-random operations, but this had several practical limitations. The now-standard protocol for randomized benchmarking (RB) relies on uniformly random Clifford operations, as proposed in 2006 by Dankert et al. [4] as an application of the theory of unitary t-designs. In current usage randomized benchmarking sometimes refers to the broader family of generalizations of the 2005 protocol involving different random gate sets [5][6][7][8][9][10][11][12][13][14] that can identify various features of the strength and type of errors affecting the elementary quantum gate operations. Randomized benchmarking protocols are an important means of verifying and validating quantum operations and are also routinely used for the optimization of quantum control procedures. [15]

  1. ^ a b Emerson, Joseph; Alicki, Robert; Zyczkowski, Karol (2005). "Scalable noise estimation with random unitary operators". Journal of Optics B: Quantum and Semiclassical Optics. 7 (10): S347. arXiv:quant-ph/0503243. Bibcode:2005JOptB...7S.347E. doi:10.1088/1464-4266/7/10/021. S2CID 17729419.
  2. ^ "Randomized Benchmarking — Qiskit textbook".
  3. ^ "Cirq Qubit Characterization Example". GitHub. 20 January 2023.
  4. ^ Dankert, Christoph; Cleve, Richard; Emerson, Joseph; Livine, Etera (2009). "Exact and Approximate Unitary 2-Designs: Constructions and Applications". Physical Review A. 80: 012304. arXiv:quant-ph/0606161. doi:10.1103/PhysRevA.80.012304. S2CID 46914367.
  5. ^ Levi, Benjamin; Lopez, Cecilia; Emerson, Joseph; Cory, David (2007). "Efficient error characterization in quantum information processing". Physical Review A. 75 (2): 022314. arXiv:quant-ph/0608246. Bibcode:2007PhRvA..75b2314L. doi:10.1103/PhysRevA.75.022314. S2CID 119511781.
  6. ^ Knill, E; Leibfried, D; Reichle, R; Britton, J; Blakestad, R; Jost, J; Langer, C; Ozeri, R; Seidelin, S; Wineland, D.J. (2008). "Randomized benchmarking of quantum gates". Physical Review A. 77 (1): 012307. arXiv:0707.0963. Bibcode:2008PhRvA..77a2307K. doi:10.1103/PhysRevA.77.012307. S2CID 4653296.
  7. ^ Magesan, Easwar; Gambetta, Jay M.; Emerson, Joseph (2011). "Scalable and Robust Randomized Benchmarking of Quantum Processes". Physical Review Letters. 106 (31–9007): 180504. arXiv:1009.3639. Bibcode:2011PhRvL.106r0504M. doi:10.1103/PhysRevLett.106.180504. PMID 21635076. S2CID 40488758.
  8. ^ Magesan, Easwar; Gambetta, Jay M.; Emerson, Joseph (2012). "Characterizing quantum gates via randomized benchmarking". Physical Review A. 85 (1050–2947): 042311. arXiv:1109.6887. Bibcode:2012PhRvA..85d2311M. doi:10.1103/PhysRevA.85.042311. S2CID 4676920.
  9. ^ Wallman, Joel; Barnhill, Marie; Emerson, Joseph (2016). "Robust characterization of leakage errors". New Journal of Physics. 18 (4): 043021. arXiv:1412.4126. Bibcode:2016NJPh...18d3021W. doi:10.1088/1367-2630/18/4/043021.
  10. ^ Dugas, A; Wallman, J; Emerson, J (2015). "Characterizing universal gate sets via dihedral benchmarking". Physical Review A. 92 (6): 060302. arXiv:1508.06312. Bibcode:2015PhRvA..92f0302C. doi:10.1103/PhysRevA.92.060302. S2CID 67832001.
  11. ^ Dugas, Arnaud; Boone, Kristine; Wallman, Joel; Emerson, Joseph (2018). "From randomized benchmarking experiments to gate-set circuit fidelity: how to interpret randomized benchmarking decay parameters". New Journal of Physics. 20 (9): 092001. arXiv:1804.01122. Bibcode:2018NJPh...20i2001C. doi:10.1088/1367-2630/aadcc7. S2CID 88509448.
  12. ^ Boone, Kristine; Dugas, Arnaud; Wallman, Joel; Emerson, Joseph (2019). "Randomized benchmarking under different gate sets". Physical Review A. 99 (3): 032329. arXiv:1811.01920. Bibcode:2019PhRvA..99c2329B. doi:10.1103/PhysRevA.99.032329. S2CID 53578478.
  13. ^ Wallman, Joel; Granade, Chris; Harper, Robin; Flammia, Steven (2015). "Estimating the coherence of noise". New Journal of Physics. 17 (11): 113020. arXiv:1503.07865. Bibcode:2015NJPh...17k3020W. doi:10.1088/1367-2630/17/11/113020. S2CID 119215285.
  14. ^ Gambetta, Jay M.; Corcoles, A.D.; Merkel, Seth T.; Johnson, Blake R.; Smolin, John A.; Chow, Jerry M.; Ryan, Colm A.; Rigetti, Chad; Poletto, Stefano; Ohki, Thomas A.; Ketchen, Mark B.; Steffen, Matthias (2012). "Characterization of Addressability by Simultaneous Randomized Benchmarking". Physical Review Letters. 109 (31–9007): 240504. arXiv:1204.6308. Bibcode:2012PhRvL.109x0504G. doi:10.1103/PhysRevLett.109.240504. PMID 23368295. S2CID 46340425.
  15. ^ Kelly, Julian; Barends, R; Campbell, B; Chen, Y; Chen, Z; Chiaro, B; Dunsworth, A; Fowler, Austin G; Hoi, I-C; Jeffrey, E (2014). "Optimal quantum control using randomized benchmarking". Physical Review Letters. 112 (24): 240504. arXiv:1403.0035. Bibcode:2014PhRvL.112x0504K. doi:10.1103/PhysRevLett.112.240504. PMID 24996075. S2CID 26689539.