Rectified tesseract

Rectified tesseract

Schlegel diagram
Centered on cuboctahedron
tetrahedral cells shown
Type Uniform 4-polytope
Schläfli symbol r{4,3,3} =
2r{3,31,1}
h3{4,3,3}
Coxeter-Dynkin diagrams

=
Cells 24 8 (3.4.3.4)
16 (3.3.3)
Faces 88 64 {3}
24 {4}
Edges 96
Vertices 32
Vertex figure
(Elongated equilateral-triangular prism)
Symmetry group B4 [3,3,4], order 384
D4 [31,1,1], order 192
Properties convex, edge-transitive
Uniform index 10 11 12
Net

In geometry, the rectified tesseract, rectified 8-cell is a uniform 4-polytope (4-dimensional polytope) bounded by 24 cells: 8 cuboctahedra, and 16 tetrahedra. It has half the vertices of a runcinated tesseract, with its construction, called a runcic tesseract.

It has two uniform constructions, as a rectified 8-cell r{4,3,3} and a cantellated demitesseract, rr{3,31,1}, the second alternating with two types of tetrahedral cells.

E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as tC8.