Algebraic structure → Group theory Group theory |
---|
In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group G over a perfect field is reductive if it has a representation that has a finite kernel and is a direct sum of irreducible representations. Reductive groups include some of the most important groups in mathematics, such as the general linear group GL(n) of invertible matrices, the special orthogonal group SO(n), and the symplectic group Sp(2n). Simple algebraic groups and (more generally) semisimple algebraic groups are reductive.
Claude Chevalley showed that the classification of reductive groups is the same over any algebraically closed field. In particular, the simple algebraic groups are classified by Dynkin diagrams, as in the theory of compact Lie groups or complex semisimple Lie algebras. Reductive groups over an arbitrary field are harder to classify, but for many fields such as the real numbers R or a number field, the classification is well understood. The classification of finite simple groups says that most finite simple groups arise as the group G(k) of k-rational points of a simple algebraic group G over a finite field k, or as minor variants of that construction.
Reductive groups have a rich representation theory in various contexts. First, one can study the representations of a reductive group G over a field k as an algebraic group, which are actions of G on k-vector spaces. But also, one can study the complex representations of the group G(k) when k is a finite field, or the infinite-dimensional unitary representations of a real reductive group, or the automorphic representations of an adelic algebraic group. The structure theory of reductive groups is used in all these areas.