Reformed methanol fuel cell

block diagram of a Reformed Methanol Fuel Cell

Reformed Methanol Fuel Cell (RMFC) or Indirect Methanol Fuel Cell (IMFC) systems are a subcategory of proton-exchange fuel cells where, the fuel, methanol (CH3OH), is reformed, before being fed into the fuel cell.

RMFC systems offer advantages over direct methanol fuel cell (DMFC) systems including higher efficiency, smaller cell stacks, less requirement on methanol purity, no water management, better operation at low temperatures, and storage at sub-zero temperatures because methanol is a liquid from −97.0 to 64.7 °C (−142.6 to 148.5 °F) and as there is no liquid methanol-water mixture in the cells which can destroy the membrane of DMFC in case of frost.

The reason for the high efficiency of RMFC in contrast to DMFC is that hydrogen containing gas is fed to the fuel cell stack instead of methanol and overpotential (power loss for catalytic conversion) on anode is much lower for hydrogen than for methanol. The tradeoff is that RMFC systems operate at hotter temperatures and therefore need more advanced heat management and insulation. The waste products with these types of fuel cells are carbon dioxide and water.

Methanol is used as a fuel because it is naturally hydrogen dense (a hydrogen carrier) and can be steam reformed into hydrogen at low temperatures compared to other hydrocarbon fuels. Additionally, methanol is naturally occurring, biodegradable, and energy dense.

RMFC systems consist of a fuel processing system (FPS),[1] a fuel cell, a fuel cartridge, and the BOP (the balance of plant).[2]

  1. ^ Üniversitesi, İstanbul. "İstanbul Üniversitesi - Tarihten Geleceğe Bilim Köprüsü - 1453". www.istanbul.edu.tr.
  2. ^ Balance of plant Archived 2007-04-11 at the Wayback Machine