Regression discontinuity design

In statistics, econometrics, political science, epidemiology, and related disciplines, a regression discontinuity design (RDD) is a quasi-experimental pretest–posttest design that aims to determine the causal effects of interventions by assigning a cutoff or threshold above or below which an intervention is assigned. By comparing observations lying closely on either side of the threshold, it is possible to estimate the average treatment effect in environments in which randomisation is unfeasible. However, it remains impossible to make true causal inference with this method alone, as it does not automatically reject causal effects by any potential confounding variable. First applied by Donald Thistlethwaite and Donald Campbell (1960) to the evaluation of scholarship programs,[1] the RDD has become increasingly popular in recent years.[2] Recent study comparisons of randomised controlled trials (RCTs) and RDDs have empirically demonstrated the internal validity of the design.[3]

  1. ^ Thistlethwaite, D.; Campbell, D. (1960). "Regression-Discontinuity Analysis: An alternative to the ex post facto experiment". Journal of Educational Psychology. 51 (6): 309–317. doi:10.1037/h0044319. S2CID 13668989.
  2. ^ Imbens, G.; Lemieux, T. (2008). "Regression Discontinuity Designs: A Guide to Practice" (PDF). Journal of Econometrics. 142 (2): 615–635. doi:10.1016/j.jeconom.2007.05.001.
  3. ^ Chaplin, Duncan D.; Cook, Thomas D.; Zurovac, Jelena; Coopersmith, Jared S.; Finucane, Mariel M.; Vollmer, Lauren N.; Morris, Rebecca E. (2018). "The Internal and External Validity of the Regression Discontinuity Design: A Meta-Analysis of 15 Within-Study Comparisons". Journal of Policy Analysis and Management. 37 (2): 403–429. doi:10.1002/pam.22051. ISSN 1520-6688.