Reputation system

A reputation system is a program or algorithm that allow users of an online community to rate each other in order to build trust through reputation. Some common uses of these systems can be found on E-commerce websites such as eBay, Amazon.com, and Etsy as well as online advice communities such as Stack Exchange.[1] These reputation systems represent a significant trend in "decision support for Internet mediated service provisions".[2] With the popularity of online communities for shopping, advice, and exchange of other important information, reputation systems are becoming vitally important to the online experience. The idea of reputation systems is that even if the consumer can't physically try a product or service, or see the person providing information, that they can be confident in the outcome of the exchange through trust built by recommender systems.[2]

Collaborative filtering, used most commonly in recommender systems, are related to reputation systems in that they both collect ratings from members of a community.[2] The core difference between reputation systems and collaborative filtering is the ways in which they use user feedback. In collaborative filtering, the goal is to find similarities between users in order to recommend products to customers. The role of reputation systems, in contrast, is to gather a collective opinion in order to build trust between users of an online community.

  1. ^ "What is reputation? How do I earn (and lose) it? - Help Center". Stack Overflow. Retrieved 2022-11-15.
  2. ^ a b c Josang, Audun (2000). "A survey of trust and reputation systems for online service provision". Decision Support Systems. 45 (2): 618–644. CiteSeerX 10.1.1.687.1838. doi:10.1016/j.dss.2005.05.019. S2CID 209552.