The ribbon synapse is a type of neuronal synapse characterized by the presence of an electron-dense structure, the synaptic ribbon, that holds vesicles close to the active zone.[1] It is characterized by a tight vesicle-calcium channel coupling[2][3] that promotes rapid neurotransmitter release and sustained signal transmission. Ribbon synapses undergo a cycle of exocytosis and endocytosis in response to graded changes of membrane potential. It has been proposed that most ribbon synapses undergo a special type of exocytosis based on coordinated multivesicular release.[4][5][6] This interpretation has recently been questioned at the inner hair cell ribbon synapse, where it has been instead proposed that exocytosis is described by uniquantal (i.e., univesicular) release shaped by a flickering vesicle fusion pore.[7]
The synaptic ribbon is a unique structure at the active zone of the synapse. It is positioned several nanometers away from the pre-synaptic membrane and tethers 100 or more synaptic vesicles.[8] Each pre-synaptic cell can have from 10 to 100 ribbons tethered at the membrane, or a total number of 1000–10000 vesicles in close proximity to active zones.[9] The ribbon synapse was first identified in the retina as a thin, ribbon-like presynaptic projection surrounded by a halo of vesicles[10] using transmission electron microscopy in the 1950s, as the technique was gaining mainstream usage.
^Glowatzki, Elisabeth; Fuchs, Paul A. (22 January 2002). "Transmitter release at the hair cell ribbon synapse". Nature Neuroscience. 5 (2): 147–154. doi:10.1038/nn796. PMID11802170. S2CID15735147.