Part of a series on |
Regression analysis |
---|
Models |
Estimation |
Background |
In robust statistics, robust regression seeks to overcome some limitations of traditional regression analysis. A regression analysis models the relationship between one or more independent variables and a dependent variable. Standard types of regression, such as ordinary least squares, have favourable properties if their underlying assumptions are true, but can give misleading results otherwise (i.e. are not robust to assumption violations). Robust regression methods are designed to limit the effect that violations of assumptions by the underlying data-generating process have on regression estimates.
For example, least squares estimates for regression models are highly sensitive to outliers: an outlier with twice the error magnitude of a typical observation contributes four (two squared) times as much to the squared error loss, and therefore has more leverage over the regression estimates. The Huber loss function is a robust alternative to standard square error loss that reduces outliers' contributions to the squared error loss, thereby limiting their impact on regression estimates.