Rolling Contact Fatigue (RCF) is a phenomenon that occurs in mechanical components relating to rolling/sliding contact, such as railways, gears, and bearings.[2] It is the result of the process of fatigue due to rolling/sliding contact.[2][3] The RCF process begins with cyclic loading of the material, which results in fatigue damage that can be observed in crack-like flaws, like white etching cracks.[2] These flaws can grow into larger cracks under further loading, potentially leading to fractures.[2][4]
In railways, for example, when the train wheel rolls on the rail, creating a small contact patch that leads to very high contact pressure between the rail and wheel.[2] Over time, the repeated passing of wheels with high contact pressures can cause the formation of crack-like flaws that becomes small cracks.[2] These cracks can grow and sometimes join, leading to either surface spalling or rail break, which can cause serious accidents, including derailments.[2][4]
RCF is a major concern for railways worldwide and can take various forms depending on the location of the crack and its appearance.[2] It is also a significant cause of failure in components subjected to rolling or rolling/sliding contacts, such as rolling-contact bearings, gears, and cam/tappet arrangements.[5] The alternating stress field in RCF can lead to material removal, varying from micro- and macro-pitting in conventional bearing steels to delamination in hybrid ceramics and overlay coatings.[5]