In mathematical logic, Rosser's trick is a method for proving a variant of Gödel's incompleteness theorems not relying on the assumption that the theory being considered is ω-consistent (Smorynski 1977, p. 840; Mendelson 1977, p. 160). This method was introduced by J. Barkley Rosser in 1936, as an improvement of Gödel's original proof of the incompleteness theorems that was published in 1931.
While Gödel's original proof uses a sentence that says (informally) "This sentence is not provable", Rosser's trick uses a formula that says "If this sentence is provable, there is a shorter proof of its negation".