Row and column spaces

The row vectors of a matrix. The row space of this matrix is the vector space spanned by the row vectors.
The column vectors of a matrix. The column space of this matrix is the vector space spanned by the column vectors.

In linear algebra, the column space (also called the range or image) of a matrix A is the span (set of all possible linear combinations) of its column vectors. The column space of a matrix is the image or range of the corresponding matrix transformation.

Let be a field. The column space of an m × n matrix with components from is a linear subspace of the m-space . The dimension of the column space is called the rank of the matrix and is at most min(m, n).[1] A definition for matrices over a ring is also possible.

The row space is defined similarly.

The row space and the column space of a matrix A are sometimes denoted as C(AT) and C(A) respectively.[2]

This article considers matrices of real numbers. The row and column spaces are subspaces of the real spaces and respectively.[3]

  1. ^ Linear algebra, as discussed in this article, is a very well established mathematical discipline for which there are many sources. Almost all of the material in this article can be found in Lay 2005, Meyer 2001, and Strang 2005.
  2. ^ Strang, Gilbert (2016). Introduction to linear algebra (Fifth ed.). Wellesley, MA: Wellesley-Cambridge Press. pp. 128, 168. ISBN 978-0-9802327-7-6. OCLC 956503593.
  3. ^ Anton (1987, p. 179)