In graph theory, a branch of mathematics, the triconnected components of a biconnected graph are a system of smaller graphs that describe all of the 2-vertex cuts in the graph. An SPQR tree is a tree data structure used in computer science, and more specifically graph algorithms, to represent the triconnected components of a graph. The SPQR tree of a graph may be constructed in linear time[1] and has several applications in dynamic graph algorithms and graph drawing.
The basic structures underlying the SPQR tree, the triconnected components of a graph, and the connection between this decomposition and the planar embeddings of a planar graph, were first investigated by Saunders Mac Lane (1937); these structures were used in efficient algorithms by several other researchers[2] prior to their formalization as the SPQR tree by Di Battista and Tamassia (1989, 1990, 1996).