STAR detector

STAR detector

The STAR detector (for Solenoidal Tracker at RHIC) is one of the four experiments at the Relativistic Heavy Ion Collider (RHIC) in Brookhaven National Laboratory, United States.[1][2][3]

The primary scientific objective of STAR is to study the formation and characteristics of the quark–gluon plasma (QGP), a state of matter believed to exist at sufficiently high energy densities. Detecting and understanding the QGP allows physicists to understand better the Universe in the seconds after the Big Bang, when the presently-observed symmetries (and asymmetries) of the Universe were established.

Unlike other physics experiments where a theoretical prediction can be tested directly by a single measurement, STAR must make use of a variety of simultaneous studies in order to draw strong conclusions about the QGP. This is due both to the complexity of the system formed in the high-energy nuclear collision and the unexplored landscape of the physics studied. STAR therefore consists of several types of detectors, each specializing in detecting certain types of particles or characterizing their motion. These detectors work together in an advanced data acquisition and subsequent physics analysis that allows definitive statements to be made about the collision.

  1. ^ Caines, Helen; et al. (STAR Collaboration) (2004). "An update from STAR—using strangeness to probe relativistic heavy ion collisions". Journal of Physics G: Nuclear and Particle Physics. 30 (1): S61–S73. Bibcode:2004JPhG...30S..61C. doi:10.1088/0954-3899/30/1/005. ISSN 0954-3899.
  2. ^ STAR webpage
  3. ^ STAR Lite, education and outreach