SWI/SNF

Snf2 ATPase bound to a nucleosome
Cryo-EM reconstruction of S. cerevisiae Snf2 ATPase in complex with a nucleosome
Identifiers
SymbolSnf2
PfamPF00176
InterProIPR000330
SMARTDEXDc
SCOP25x0x / SCOPe / SUPFAM
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary

In molecular biology, SWI/SNF (SWItch/Sucrose Non-Fermentable),[1][2] is a subfamily of ATP-dependent chromatin remodeling complexes, which is found in eukaryotes. In other words, it is a group of proteins that associate to remodel the way DNA is packaged. This complex is composed of several proteins – products of the SWI and SNF genes (SWI1, SWI2/SNF2, SWI3, SWI5, SWI6), as well as other polypeptides.[3] It possesses a DNA-stimulated ATPase activity that can destabilize histone-DNA interactions in reconstituted nucleosomes in an ATP-dependent manner, though the exact nature of this structural change is unknown. The SWI/SNF subfamily provides crucial nucleosome rearrangement, which is seen as ejection and/or sliding. The movement of nucleosomes provides easier access to the chromatin, enabling binding of specific transcription factors,[4] and allowing genes to be activated or repressed.[5]

The human analogs of SWI/SNF are "BRG1- or BRM-associated factors", or BAF (SWI/SNF-A) and "Polybromo-associated BAF", which is also known as PBAF (SWI/SNF-B).[6] There are also Drosophila analogs of SWI/SNF, known as "Brahma Associated Protein", or BAP and "Polybromo-associated BAP", also known as PBAP.[7]

  1. ^ Neigeborn L, Carlson M (December 1984). "Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae". Genetics. 108 (4): 845–858. doi:10.1093/genetics/108.4.845. PMC 1224269. PMID 6392017.
  2. ^ Stern M, Jensen R, Herskowitz I (October 1984). "Five SWI genes are required for expression of the HO gene in yeast". Journal of Molecular Biology. 178 (4): 853–868. doi:10.1016/0022-2836(84)90315-2. PMID 6436497.
  3. ^ Pazin MJ, Kadonaga JT (March 1997). "SWI2/SNF2 and related proteins: ATP-driven motors that disrupt protein-DNA interactions?". Cell. 88 (6): 737–740. doi:10.1016/S0092-8674(00)81918-2. PMID 9118215.
  4. ^ Barisic, Darko; Stadler, Michael B.; Iurlaro, Mario; Schübeler, Dirk (May 2019). "Mammalian ISWI and SWI/SNF selectively mediate binding of distinct transcription factors". Nature. 569 (7754): 136–140. Bibcode:2019Natur.569..136B. doi:10.1038/s41586-019-1115-5. ISSN 1476-4687. PMC 6522387. PMID 30996347.
  5. ^ Cite error: The named reference Clapier_2017 was invoked but never defined (see the help page).
  6. ^ Nie Z, Yan Z, Chen EH, Sechi S, Ling C, Zhou S, et al. (April 2003). "Novel SWI/SNF chromatin-remodeling complexes contain a mixed-lineage leukemia chromosomal translocation partner". Molecular and Cellular Biology. 23 (8): 2942–2952. doi:10.1128/MCB.23.8.2942-2952.2003. PMC 152562. PMID 12665591.
  7. ^ Tang L, Nogales E, Ciferri C (June 2010). "Structure and function of SWI/SNF chromatin remodeling complexes and mechanistic implications for transcription". Progress in Biophysics and Molecular Biology. 102 (2–3): 122–128. doi:10.1016/j.pbiomolbio.2010.05.001. PMC 2924208. PMID 20493208.